How long is the flea in the air from the time it jumps to the time it hits the ground?
In this problem, you will apply kinematic equations to a jumping flea. Take the magnitude of free-fall acceleration to be 9.80 m/s^2. A flea jumps straight up to a maximum height of 0.430 m. How long is the flea in the air from the time it jumps to the time it hits the ground?
You are on the right track
consider
h=.5gt^2
h = 0.430 m
so t = sqrt(2h/g)
hower it is the time for the flea to fall down from height h and it takes the same amount of time to go up as it is to come down.
t(total)=2t
finaly we have
t(total)=2sqrt(2h/g)
t(total) 2 sqrt(2 x 0..430 /9.80)
t(total)=0.59 sec
How long is the flea in the air from the time it jumps to the time it hits the ground?